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Particle Dispersion in a Gas  ~ 

H. J. M. Hanley= 

The dispersion mechanism of particles in a gas is discussed lu the viewpoint 
of noncquilibrium tlaermodynamics and kinetic theory, A heuristic equation, 
based on the quasi-Lorentz model developed by Mason and other workers, for 
the particle velocity in the presence of a gradient of pressure and temperature 
is proposed for all values of a parameter s. where s is defined as the ratio of the 
particle radius r to a multiple of the mean free path, 2, of the gas naedium. 
A schematic calculation demonstrates the conditions under which molecular 
dilKision could play a role in a realistic atmospheric pollution problem. 

KEY WORDS: atmospheric pollution; diffusion coefficients: kinetic theory: 
noneqnilibrium thermodynamics;  particulate matter, quasi-Lorentz model; 
thermal dill'usion factor. 

1. I N T R O D U C T I O N  

A heuristic equation Ior the difl'usion of particles in a dilute gas, subjected 
to gradients of pressure and temperature, and under the influence of gravity 
is introduced in this paper. The objective is to see when molecular diffusion 
might be a significant contribution to particle dispersion, even in a convec- 
tive field. The paper is intended as a tribute to Ed Mason, and, because of 
this, it is based on some of his ideas. Many of Mason's earlier papers [ 1 ] 
dealt with adroit applications of kinetic theory, and I think this problem 
would have appealed to his approach and philosophy. 

The underpinning of the calculation here is Mason's work on the 
model quasi-Lorentzian gas i"2]. A quasi-Lorentzian gas is a mixture in 
which the number fraction of one component is very small, but the mass 
of this component is far greater than the mass of the others. In this discus- 
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sion, the system considered is a binary mixture of species a (gas molecules) 
and p (particles) at temperature T and pressure P such that 

Jill, ~ II1,, 

i l l , <~ n ,  
(1) 

where mi is the mass of i and n i is the number density. The number 
li"actions are xi = n / n ,  where n is the total number of particles, and x,,--* 1 
from Eq,(1). The corresponding mass densities are pi=mATi, where 
p -- p,, + pp, with lnass fractions x'~ = p / p .  

The system is taken to be isotropic and the particles to be mono- 
disperse. And although the system has gradients of temperature and 
pressure, it is assumed to be in local equilibrium and defined thermo- 
dynamically. It is not obvious that this assumption is always valid unless 
the sizes of the mixture components are of the same order, which is not 
realistic in view of Eq. ( 1 ). Accordingly, we first review the limiting cases 
that are compatible: Case a, in which the mean lYee path of the gas 2 is 
lnuch smaller than a characteristic particle dimension such as the particle 
radius r, r/2 >> 1; and the antithetical Case b, for which r/2 ,~ 1. For Case 
a, the local thermodynamic properties of the system are deterlnmed by the 
gas-gas interactions, but the particle motion will be dominated by external 
forces, such as gravity. Conversely, for Case b, the system approximates a 
thermodynamic two-component mixture with component a in excess. 
Hence the properties of the mixture will depend on the dynamics of the 
gas-particle collisions. Case b is clearly the more interesting in the context 
of this paper because diffusion forces will affect the particle distribution. 

2. D I S P E R S I O N  

The diffusive flux of a particle can be defined in terms of its velocity 
up with respect to an external coordinate system. It is better, however, to 
consider the flux J~,, which is defined with respect to the local center of 
mass velocity u, where pu = p,,u,, + ppup: 

J p =  Pr(Uv-  u) (2) 

The starting point is to write the expression for this flux in the context 
of nonequilibrium thermodynamics [3] :  

L 
_ _ _  _ -i,,_2t g r a d T  ( 3 ) Jp = LP,,T grad(I t l '  --/~,,)  T T 2 
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where lg is the chemical potential of i and Lp,, and L~,,~ are the phenomenol-  
ogical Onsager coefficients; L~,,, is the coefficient for diffusion and Lpq is the 
coefficient for the formal coupling between the mass flow ofp and the tem- 
perature gradient. Translbrming the gradient of chemical potential, Eq. (3) 
becomes, after some manipulation [4-5],  

L l,,R [- , , , gradP 
Ji, = ~ ,  )gradx  I - W ( n l p -  m,,) x,  vp p 

/lt ,,/n /,.\,,.r l, W [ 

L,,,,,,,,,,,,,,.u 1 
+ Lt,, ,RT 2 J 

where 

(4) 

-~ .VI, 
W= .xp + 

II11> D1. 

and it is assumed that the particles and gas make up an ideal dilute 
mixture. Defining coefficients by 

L/,,, R 
D' 

P ~"' =)n.m, ,x;x) ,  W 

~',, = W ( m , ,  - m , , )  

:r  Lp,d, , ,m p W 

Lp, R T  

gives the equation 

F . . . . .  gradP , , , gradT] 
J , , = - p D ' , , , [ g , . a a x , , - x , , x , , O : p - - ~ + x , , x p O ~ r ~  j (5) 

which can be connected readily with kinetic theory when reformed in terms 
of number fi'actions: 

F gradP gradT] 
,1,,u,, - n,,u = -riD,,,, [ g r a d x , , -  x,  x',,cr ~ + x,,x,,ccr----~-- j (6) 

where D~,,, is the kinetic theory diffusion coefficient, COp is the pressure diffu- 
sion factor, and cr r is the thermal diffusion factor [2, 6] ,  also now u = ( l /n)  
[n ,u ,  + n,,u,,]. 
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2.1. The Quasi-Lorenlzian Limit 

In the quasi-Lorentzian limit expressed by Eq. (1), Eq. (6) reduces to 

tl t, up - tl t, u = - tl t, Dp,, [ grad  In Dip 1 r i p - - -  g r a d l n  P +c( . rgrad ln  T (7) 
I l l  a 

since .v,,--+ 1 and c(; ,~m;, /m, , .  The appropriate quasi-Lorentzian expres- 
sions for the coefficients were derived by Mason and Chapman [2]  and by 
Mason [7] .  who showed that. in the first approximation, 

3 _ ~  (8) 
nDp,, 16r 3 V zrm, 

~-r= (9) 

where k is Bohzmann's constant and d is the radius of the species a, the gas 
molecule in this case. 

3. VELOCITY OF A PARTICLE IN A G E N E R A L  F O R C E  FIELD 

As implied when the diffusion problem was outlined, there is no 
satisfactory way to derive a mass flow equation for all values of the 
parameter r/). because the transition region between (in our notation] Case 
a and Case b cannot be defined unambiguously. All attempts to do this, 
therefore, must ultimately introduce some empiricism [8] .  Here we 
propose a general relation and a general friction coefl]cient 0: 

mpnvli p= - 0 ( n p u p - n p u ) +  F , ) + m v n  pg (10) 

where F~) is the diffusive force and mpnpg the gravity term. The relation is 
heuristic, but in the Case a limit, mvn~,g> F~ ,  it reduces to a Stokes' 
equation, 

n it, n~, fi/, = - 6nrq( n/, % - n p  u ) + ,  1 t, np g (11) 

and the friction coefficient is thus appropriately defined; t 1 is the viscosity 
of the gas medium. In the Case b limit, however, provided the difl'usion 
forces dominate, the expression becomes 

mpnru p = - B0b, u p -  npu) + F,~ (12) 
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where now the friction coefficient should be 

k T  
B = - -  (13) Dpa 

Provided that the acceleration 6, becomes zero in a time short compared 
to the time a particle will travel a mean free path length, the diffusive force is 

I m, 1 F t ) = - G ,  kT g r a d l n n , - - - g r a d l n P + : ~ r g r a d l n T  (14) 
I l l  a 

from Eq. (7). 
The most straightforward expression for O which is a smooth function 

of the particle radius r and which will approach the Case a and Case b 
limiting values is 

6m'llB 
O (15) 

[67rr~ 7 + B] 

This relation, therefore, is postulated as the general coefficient for Eq. (10). 
A small modification to Eqs. (10) and (15) links them more closely 

with experiment. Some time ago Hanley and Steele [9] studied the flow of 
a gas through a capillary to determine how the diffusion coefficients varied 
with respect to the ratio 1/2, where / is the capillary radius. If the ratio 1/2 
is very large, the flow is Poiseuille flow. If the ratio is small, the flow is 
Knudsen. If the ratio is intermediate, the flow is known as slip, and Hanley 
and Steele observed that slip flow corresponded roughly to the region in 
which I/2 -~ 10. Clearly the limiting conditions of the capillary flow problem 
are very similar to the quasi-Lorentzian limits discussed in this paper. The 
flow, in fact, can be modeled in terms of the Lorentzian variant in which 
the large particles are fixed in space and act as a membrane [2, 10]. We, 
therefore, carry the analogy further and define an arbitrary but convenient 
dimensionless radius whose value should delineate between Case a and 
Case b, namely 

s = r/(102) (16) 

The diffusion and viscosity coefficients of Eqs, (10) and (15) are now 
defined in terms of s but the change is trivial, for example, the diffusion 
coefficient becomes 

nD,,,_3(102) 2 ~ (17) 
16s 2 ~/ rrm. 
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and so on. [That  this parameter s makes sense is reinforced when s is sub- 
stituted into Eq. (15) and 0 plotted against. In 0 varies smoothly, as it should, 
but the slope changes markedly around s = 1. Note that the parameter is a 
redefinition of the conventional Knudsen number, Kn = 22 / r [  8]. ] 

Equation (10t has one final modification: the diffusion term is 
qualified by a damping factor, e x p ( - s )  because as 0 4  6nrq, F~--*0 on 
physical grounds. Provided, then, that/~, is zero, the equation for the par- 
ticle dispersion becomes 

I m~, 1 O(up - u ) --- exp( - s) k T grad In n~, - - -  grad In P + ~ r grad In T + ms, g 
111. 

(18) 

which is the final expression. The diffusive flow of p will, in principle 
depend on the gradients of number density, pressure, and temperature, 
which could either reinforce or counterbalance each other, depending on 
the sign and magnitude of the gradients. Note, however, that the thermal 
diffusion factor is positive lbr the hard-sphere-like particles considered he,'e, 
but it could be positive or negative tbr large real molecules, depending on the 
temperature [ 6 ]. 

3.1. Dispersion in an Atmospheric Temperature Inversion Layer 

The paper concludes with a brief and symbolic discussion. A very real 
problem in Boulder, Colorado, is to understand better the dispersion and 
distribution of submicrometer-sized pollutants over the city. Like many 
other cities, Boulder can suffer from a brown cloud when a temperature 
inversion layer hangs overhead. Inversions are most common on sunny 
winter days when the ground temperature is around freezing. Atyp icaI  
inversion temperature gradient extends to a height (/1) of about 900 m 
above the surface and is of the order AT/T~O.13. The atmospheric 
pressure at Boulder is about 0.083 MPa and drops to about 0.074 Mpa at 
the higher elevation. Is the contribution of molecular diffusion significant 
to the particle dispersion, even though there is a consensus that molecular 
diffusion would be overwhelmed by convection and turbulence in a real 
atmosphere? It is, of course, true that the latter factors must dominate in 
most cases [ 11 ]. Nevertheless, there is evidence that molecular diffusion 
should not be ruled out. For  example, there is the historical fact, which 
goes back at least to Tyndall [ 12], that a temperature gradient definitely 
affects the motion and distribution of dust or soot in a gas. And it is well- 
known that molecular diffusion can couple with convection: a phenomenon 
that was exploited to extract the uranium isotopes needed to manufacture 
the atomic bomb. 



Particle Dispersion in a Gas 953 

Consider Eq. (18) and assume (a) that the air is a single-species gas, 
(b) that the inversion layer is at a steady state, and (c) that the gradients 
vary along the/ t-coordinate only and are defined as positive if the higher 
value is at h = 0. Set u to zero and vary the ratio s while keeping all other 
terms in the equation fixed. If the values of the gradient terms are of the 
order of (or even one order less than) the value of the gravity contribution 
for a particular choice of s, we can argue as a rule of thumb that a diffusion 
mechanism should be considered when investigating the dispersion of 
particles of reduced size s. Given the data in Table I [ 13 ], we estimate that 
diffusion may contribute if s ~< 0.05 or, in other words, if the particle radii 
are less than about 50 nm. Particles of this dimension are classed under the 
general headings of aerosols and small particulate matter [14]. Hence, 
according to our simple criteria, molecular diffusion is significant to the 
dispersion of particles of this size. The thermal diffusion term is the inter- 
esting contribution since the direction of the temperature gradient (with a 
positive thermal diffusion factor) implies that the heavier particles will 
migrate downwards and, hence, reinforce the effects of the pressure 
gradient and gravity. As an aside, note that the calculations were based on 
the Boulder elevation approximation for the air mean free path 2 = I0 7 m. 
But the mean free path will increase substantially with height. At stratospheric 
heights, the dispersion of even micrometer-sized particles could be strongly 
influenced by the diffusion mechanism. 

Setting n to zero is a severe approximation since it excludes the effects 
of convection and turbulence IYom the calculation, but it does not 
necessarily follow that molecular diffusion would be overruled if these 
factors were included. The pictorial explanation of Grew and Ibbs [6]  
illustrates how diffusion and convection may couple. It is as follows. Con- 

Table I. Approxinmte Values of the Parameters of Eq. { 181 Corresponding to a 
Temperature Inversion Above Boulder. CO 

Air  nlei.ln free path. ,;, 
Reduced part ic le size. s. ibr  particles o f  radius r 

To ta l  density, n 

Mass o f  air  nlolecule, m,, 
Mass of pollulion particle, radius, r, and density = 2 kg.  nl ~ 

Radius of air molecule, d 
Viscosity o f  air, J/ 

Average telnperature. T 
Average pressure. P 
Height of the system, h 
l-aclor AP Ph 
Factor J T Th 

I 0 - m 

10%" 
10 -'s molecules �9 m 

5 x  10 -'Sg 

( 4 x  1 0  ~-" .v~} g 
I 0 io 111 

2 x 10 ~ Pa �9 s 

300 K 
0.08 M Pa 
90{} m 
I 0 a m i 

- 2 x I 0 ~ m i 
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sider a two-dimensional system divided into volume segments, each in local 
equilibrium. Figure 1 displays eight of the segments. The concentration of 
a given component is set constant throughout the system at an initial time, 
at 50% for convenience (Fig. 1 ). A temperature gradient is imposed on the 
system. The gradient will induce convections but will also set up the 
mechanism of thermal diffusion, Coupling will occur if the diffusion of par- 
ticles from the segments can take place faster than convection can displace 
the segments with respect to each other. For example, suppose the system 
diffuses to the state shown in Fig. lb. Convection acts and the segments are 
dislocated (Fig. lc}. Then diffusion leads to Fig. ld. Convection follows, 
and so on. Using the numbers in Table I, and using that a dimension of a 
segment in a real atmosphere should be at least ( 10s)~} m, we estimate that 
intersegmental diffusion would take place over 10 2 to 1 s. Hence, unless 
the segments are displaced by rapid and violent turbulence or convection, 
molecular dilTusion can well be the trigger for an ultimately large particle 
gradient. 

In conclusion, how convection and molecular diffusion combine to 
influence particle dispersion in a system as complex as the real atmosphere 
is a very difficult problem and we have not addressed it quantitatively. 
But we have at least demonstrated that molecular dil'tiision should not be 
dismissed out of hand. 

I 
' 5 0  50 50  50 4o  4o  4 0  4 o  Cold I 

Hot 50 50 50 50 60 60 60 60 

(a) (b) 

( 40 40 40 60 ~ 30 30 30 50 
) 

40 60 60 60 50 70 70 70 

Co) (d )  

Fig. 1. Schematic pattern showing the combined effect of dilTusion and 
convection. The system is divided into eight segments, initially all with 
uniform composition la). Difrusion causes a separation of one compo- 
nent. represented by I b ). Convection displaces the segments I c ), allowing 
dill'usion to enhance the separation (d). 
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